Pact:
Smart Contracts

You Can Take
To The Bank

by Doug Beardsley

N KADENA




Outline

@ Blockchain Background
@ Problems with Smart Contracts

@ How Pact Solves Them



Background



What are Blockchains?

O Tamper proof append-only digital
storage

O Same data stored on many computers
O Everyone agrees exactly (consensus)

O Don't need to trust a central source of
truth

O The network is the source of truth



Smart Contracts

O Not smart
O Not contracts
O Just computer programs

O Stored and run in a blockchain



Smart Contract Programming is Different

O Every operation runs on
thousands of different
computers

O Same inputs must always give
exactly the same outputs

Otherwise how will you establish consensus?

o Stakes are high with lots of
digital money on the line

O Must pay transaction fees to
interact with blockchain
programs

O Codeisimmortalized forever



Correctness more / :/

important than usual /"/ ¢ @




The Problem






Bugs

O 25+% of contracts tested had
exception vulnerabilities (a
specific type of bug)

https://eprint.iacr.org/2016/633.pdf

o And that's just one category of
bugs

10



d
=
s

—t

2
=
7
<,
7
O
.,
e
J
o




Problems with Smart Contract Languages

O Based on mainstream languages

O Code stored in the blockchain is
not human readable

O Hard to verify

O o000

12



Rubixi: Mainstream paradigm strikes

Contract Source Code </>

1~ contract Rubixi {

2

3 //Declare variables for storage critical to contract
4 uint private balance = 0;

5 uint private collectedFees = 0;

6 uint private feePercent = 10;

7 uint private pyramidMultiplier = 300;
8 uint private payoutOrder = 0;

9

10 address private creator;

11

12 //Sets creator

13~ function DynamicPyramid() {

14 creator = msg.sender,;

15 }

O Actual smart contract

O Contract got renamed, but not
the constructor

O Result: anyone can become
owner of the contract

13



The 00 paradigm and the
associated DRY violation
directly caused Rubixi bug




Mainstream Languages Not Sufficient

O Rubixi problem would never be perceived as
significant in 00 languages

Two minute fix and then move on

© Don't guarantee determinism

(same inputs = same outputs)

O Don't provide enough safety

Null pointers
Unprincipled type conversions
etc...

15



Unreadable code in the blockchain

O Authors can publish the code O Only ~1% of contracts have
and associate it with the available source code

contract but... https://arxiv.org/pdf/1802.06038.pdf

16



Hard to Verify

O Fallback functions complicate control flow
© Values can be mutated

O Turing Complete

17



How Pact Addresses

These Problems




Didn't default to flawed paradigm
just because it's popular



Purpose-built with smart contracts in mind

O Codein the blockchain is
human readable

O Smart contracts can be
updated/fixed

O Designed for storing data

O Built-in auth

O Can't put encryption keys in
code

O NOT Turing Complete

O Values are immutable

O Open source, written in Haskell
by people familiar with

cutting-edge programming
languages.

20



Hello World

(define-keyset 'hello-admin (read-keyset 'hello-keyset))

(module hello 'hello-admin
"Pact hello-world with database example"

(defschema hello-schema
"VALUE stores greeting recipient”
value:string)

(deftable hellos:{hello-schema})

1

2

3

4

5

6

7

8

9

10

11

12 (defun hello (value)

13 "Store VALUE to say hello with."
14 (write hellos "hello" { 'value: value }))
15

16 (defun greet ()

17 "Say hello to stored value."

18

19

20

(with-read hellos "hello" { "value" := value }
(format "Hello, {}!" [valuel])))

)
21
22 (create-table hellos)
23
24 (hello "world") ;; store "hello"
25 (greet) ;; say hello!

21



Formal Verification



Formal Verification

O Proves things about your program for all possible
inputs

O Impossible to actually test them all

o Significantly benefits from not being Turing
Complete

23



Formal Verification Example

1 (defun abs:integer (x:integer)

2 ("Returns the absolute value of an integer”
3 (properties

4 | (>= result 0)

5 (not (table-read 'accounts))

6 (not (table-write 'accounts))]))
/ (if (< x 0)
3 (- X)
9 X))

24






Recap

© Humans mess up

Always operating at the edge of manageable complexity

o Stakes are higher with smart contracts,
correctness more important

O Need systems that make common mistakes
impossible

O Pact: Purpose built, human readable, verifiable

26



More Info

N KADENA

O Docs: http://kadena.io/pact

O REPL: http://kadena.io/try-pact

O https://github.com/kadena-io/pact
O We're hiring!

O doug@kadena.io

27



